Publications

2009

Zhou, Miou, and Michel Baudry. (2009) 2009. “EUK-207, a Superoxide Dismutase/Catalase Mimetic, Is Neuroprotective Against Oxygen/Glucose Deprivation-Induced Neuronal Death in Cultured Hippocampal Slices.”. Brain Research 1247: 28-37. https://doi.org/10.1016/j.brainres.2008.10.016.

EUK-207 is a synthetic superoxide dismutase/catalase mimetic that has been shown to reverse age-related learning deficits and brain oxidative stress in mice. In the present experiments, we tested the effects of EUK-207 on oxygen/glucose deprivation (OGD)-induced cell death in cultured hippocampal slices and on several mechanisms that have been postulated to participate in this process. Cultured hippocampal slices were subjected to 1 h OGD followed by 3 or 24 h recovery in regular medium with glucose and oxygen. Lactate dehydrogenase (LDH) release in culture medium and propidium iodide (PI) uptake in slices were used to evaluate cell viability. When EUK-207 was applied either 1 or 2 h before OGD, OGD-induced LDH release was significantly reduced. When EUK-207 was applied 1 h before OGD and during 24 h recovery, PI uptake was also reduced. OGD-induced accumulation of reactive oxygen species (ROS) was evaluated with the fluorescent probe DCF. DCF fluorescence in slices increased steadily during OGD treatment, rapidly disappeared following return to regular medium before slowly increasing again during the 24 h recovery period. When measured 3 h after OGD, increased ROS levels were significantly reduced by EUK-207. OGD also increased lipid peroxidation levels and this effect was also reduced by EUK-207 6 h following OGD. Cytosolic cytochrome c and nuclear apoptosis-inducing factor (AIF) were increased 3 h after OGD, and the translocation of AIF from mitochondria to nucleus was partly blocked by treatment with EUK-207. In conclusion, EUK-207 provides neuroprotection against OGD-induced cell death in cultured hippocampal slices. As EUK-207 prevents free radical formation and lipid peroxidation, the neuroprotection is related to elimination of free radical generation and lipid peroxidation, as well as to decreased activation of pro-apoptotic factors. Our data support the further clinical evaluation of this class of molecules for the prevention of ischemic cell damage.

Liao, Guanghong, Miou Zhou, Simon Cheung, James Galeano, Nam Nguyen, Michel Baudry, and Xiaoning Bi. (2009) 2009. “Reduced Early Hypoxic/Ischemic Brain Damage Is Associated With Increased GLT-1 Levels in Mice Expressing Mutant (P301L) Human Tau.”. Brain Research 1247: 159-70. https://doi.org/10.1016/j.brainres.2008.10.022.

Mutations in tau proteins are associated with a group of neurodegenerative diseases, termed tauopathies. To investigate whether over-expressing human tau with P301L mutation also affects stroke-induced brain damage, we performed hypoxia/ischemia (H/I) in young adult P301L tau transgenic mice. Surprisingly, brain infarct volume was significantly smaller in transgenic mice compared to wild-type mice 24 h after H/I induction. TUNEL staining also revealed less brain apoptosis in transgenic mice following H/I. H/I resulted in a significant increase in tau fragments generated by caspase activation and a marked decrease in tau phosphorylation at residue T231 in cortex of wild-type but not transgenic mice. Activation of calpain and caspase-3 following H/I was also reduced in transgenic compared to wild-type mice, as reflected by lower levels of the specific spectrin breakdown products generated by calpain or caspase-3. Finally, basal levels of the glial glutamate transporter, GLT-1, were higher in brains of transgenic as compared to wild-type mice. These results support the idea that enhanced levels of GLT-1 in transgenic mice are responsible for reducing H/I-induced brain damage by decreasing extracellular glutamate accumulation and subsequent calpain and caspase activation.

Dominguez, Reymundo, Eric Hu, Miou Zhou, and Michel Baudry. (2009) 2009. “17beta-Estradiol-Mediated Neuroprotection and ERK Activation Require a Pertussis Toxin-Sensitive Mechanism Involving GRK2 and Beta-Arrestin-1.”. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 29 (13): 4228-38. https://doi.org/10.1523/JNEUROSCI.0550-09.2009.

17-beta-Estradiol (E2) is a steroid hormone involved in numerous bodily functions, including several brain functions. In particular, E2 is neuroprotective against excitotoxicity and other forms of brain injuries, a property that requires the extracellular signal-regulated kinase (ERK) pathway and possibly that of other signaling molecules. The mechanism and identity of the receptor(s) involved remain unclear, although it has been suggested that E2 receptor alpha (ERalpha) and G proteins are involved. We, therefore, investigated whether E2-mediated neuroprotection and ERK activation were linked to pertussis toxin (PTX)-sensitive G-protein-coupled effector systems. Biochemical and image analysis of organotypic hippocampal slices and cortical neuronal cultures showed that E2-mediated neuroprotection as well as E2-induced ERK activation were sensitive to PTX. The sensitivity to PTX suggested a possible role of G-protein- and beta-arrestin-mediated mechanisms. Western immunoblots from E2-treated cortical neuronal cultures revealed an increase in phosphorylation of both G-protein-coupled receptor-kinase 2 and beta-arrestin-1, a G-protein-coupled receptor adaptor protein. Transfection of neurons with beta-arrestin-1 small interfering RNA prevented E2-induced ERK activation. Coimmunoprecipitation experiments indicated that E2 increased the recruitment of beta-arrestin-1 and c-Src to ERalpha. These findings suggested that ERalpha is regulated by a mechanism associated with receptor desensitization and downregulation. In support of this idea, we found that E2 treatment of cortical synaptoneurosomes resulted in internalization of ERalpha, whereas treatment of cortical neurons with the ER agonists E-6-BSA-FITC [beta-estradiol-6-(O-carboxymethyl)oxime-bovine serum albumin conjugated with fluorescein isothiocyanate] and E-6-biotin [1,3,5(10)-estratrien-3,17beta-diol-6-one-6-carboxymethloxime-NH-propyl-biotin] resulted in agonist internalization. These results demonstrate that E2-mediated neuroprotection and ERK activation involve ERalpha activation of G-protein- and beta-arrestin-mediated mechanisms.

Zhou, Miou, Wei Xu, Guanghong Liao, Xiaoning Bi, and Michel Baudry. (2009) 2009. “Neuroprotection Against Neonatal Hypoxia/Ischemia-Induced Cerebral Cell Death by Prevention of Calpain-Mediated MGluR1alpha Truncation.”. Experimental Neurology 218 (1): 75-82. https://doi.org/10.1016/j.expneurol.2009.04.006.

Many cellular events are involved in ischemic neuronal death, and it has been difficult to identify those that play a critical role in the cascade triggered by lack of oxygen and glucose, although it has been widely recognized that overactivation of glutamate receptors represents one of the initiating factors. Different glutamate receptor antagonists, especially those for N-methyl-D-aspartate (NMDA) receptors, have achieved significant success in animal models of hypoxia/ischemia; however, these antagonists have failed in clinical trials. We previously reported that calpain-mediated truncation of metabotropic glutamate receptor 1alpha (mGluR1alpha) played a critical role in excitotoxicity, and that a TAT-mGluR1 peptide consisting of a peptide surrounding the calpain cleavage site of mGluR1alpha and the peptide transduction domain of the transactivating regulatory protein (TAT) of HIV was neuroprotective against excitotoxicity. In the present study we tested the effect of this peptide in in vitro and in vivo models of neonatal hypoxia/ischemia. TAT-mGluR1 peptide prevented oxygen/glucose deprivation- (OGD) and hypoxia/ischemia- (H/I) induced neuronal death in cultured hippocampal slices and neonatal rats, respectively. TAT-mGluR1 blocked H/I-induced mGluR1alpha degradation but had no effect on H/I-induced spectrin degradation, suggesting that neuroprotection was due to prevention of calpain-mediated mGluR1alpha truncation and not to calpain inhibition. Our results therefore suggest that mGluR1alpha truncation plays a critical role in neonatal hypoxia/ischemia and that blockade of this event may prevent the activation of many downstream cytotoxic cascades. Compared to glutamate receptor antagonists and general calpain inhibitors, TAT-mGluR1 may have limited side effects.

Zhou, Yu, Jaejoon Won, Mikael Guzman Karlsson, Miou Zhou, Thomas Rogerson, Jayaprakash Balaji, Rachael Neve, Panayiota Poirazi, and Alcino J Silva. (2009) 2009. “CREB Regulates Excitability and the Allocation of Memory to Subsets of Neurons in the Amygdala.”. Nature Neuroscience 12 (11): 1438-43. https://doi.org/10.1038/nn.2405.

The mechanisms that determine how information is allocated to specific regions and cells in the brain are important for memory capacity, storage and retrieval, but are poorly understood. We manipulated CREB in a subset of lateral amygdala neurons in mice with a modified herpes simplex virus (HSV) and reversibly inactivated transfected neurons with the Drosophila allatostatin G protein-coupled receptor (AlstR)/ligand system. We found that inactivation of the neurons transfected with HSV-CREB during training disrupted memory for tone conditioning, whereas inactivation of a similar proportion of transfected control neurons did not. Whole-cell recordings of fluorescently tagged transfected neurons revealed that neurons with higher CREB levels are more excitable than neighboring neurons and showed larger synaptic efficacy changes following conditioning. Our findings demonstrate that CREB modulates the allocation of fear memory to specific cells in lateral amygdala and suggest that neuronal excitability is important in this process.

Jourdi, Hussam, Yu-Tien Hsu, Miou Zhou, Qingyu Qin, Xiaoning Bi, and Michel Baudry. (2009) 2009. “Positive AMPA Receptor Modulation Rapidly Stimulates BDNF Release and Increases Dendritic MRNA Translation.”. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 29 (27): 8688-97. https://doi.org/10.1523/JNEUROSCI.6078-08.2009.

Brain-derived neurotrophic factor (BDNF) stimulates local dendritic mRNA translation and is involved in formation and consolidation of memory. 2H,3H,6aH-pyrrolidino[2'',1''-3',2']1,3-oxazino[6',5'-5,4]-benzo[e]1,4-dioxan-10-one (CX614), one of the best-studied positive AMPA receptor modulators (also known as ampakines), increases BDNF mRNA and protein and facilitates long-term potentiation (LTP) induction. Several other ampakines also improve performance in various behavioral and learning tasks. Since local dendritic protein synthesis has been implicated in LTP stabilization and in memory consolidation, this study investigated whether CX614 could influence synaptic plasticity by upregulating dendritic protein translation. CX614 treatment of primary neuronal cultures and acute hippocampal slices rapidly activated the translation machinery and increased local dendritic protein synthesis. CX614-induced activation of translation was blocked by K252a [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester], CNQX, APV, and TTX, and was inhibited in the presence of an extracellular BDNF scavenger, TrkB-Fc. The acute effect of CX614 on translation was mediated by increased BDNF release as demonstrated with a BDNF scavenging assay using TrkB-Fc during CX614 treatment of cultured primary neurons and was blocked by nifedipine, ryanodine, and lack of extracellular Ca(2+) in acute hippocampal slices. Finally, CX614, like BDNF, rapidly increased dendritic translation of an exogenous translation reporter. Together, our results demonstrate that positive modulation of AMPA receptors rapidly stimulates dendritic translation, an effect mediated by BDNF secretion and TrkB receptor activation. They also suggest that increased BDNF secretion and stimulation of local protein synthesis contribute to the effects of ampakines on synaptic plasticity.

2008

Xu, Wei, Miou Zhou, and Michel Baudry. (2008) 2008. “Neuroprotection by Cell Permeable TAT-MGluR1 Peptide in Ischemia: Synergy Between Carrier and Cargo Sequences.”. The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry 14 (5): 409-14.

Overactivation of glutamate receptors is a critical mechanism for neuronal death in ischemic stroke. Previously, we reported that overactivation of N-methyl-D-aspartate (NMDA)-type glutamate receptor induced calpain-mediated truncation of metabotropic glutamate receptor mGluR1alpha, resulting in suppression of its neuroprotective signaling pathway. A fusion peptide containing the transactivating regulatory protein (TAT) protein transduction domain (PTD) and the mGluR1alpha sequence spanning the calpain cleavage site effectively blocked mGluR1alpha truncation and protected neurons against NMDA-induced neuronal toxicity. We recently evaluated the role of this mechanism in ischemia-induced cell death. We found that mGluR1alpha was truncated in both in vitro and in vivo models of stroke and that this truncation was accompanied by the typical calpain-mediated proteolysis of spectrin. The TAT-mGluR1 fusion peptide produced robust neuroprotective effect in the in vitro model of stroke. In addition, we found that the TAT protein transduction domain peptide itself altered the function of membrane channels through some unknown mechanisms and showed some mild neuroprotective effects. Together, these experiments indicated a synergistic relationship between the TAT carrier sequence and the mGluR1alpha peptide cargo sequence, and this synergy might account for the neuroprotective properties of the TAT-mGluR1 peptide.

2007

Zhou, Miou, Reymundo Dominguez, and Michel Baudry. (2007) 2007. “Superoxide Dismutase/Catalase Mimetics But Not MAP Kinase Inhibitors Are Neuroprotective Against Oxygen/Glucose Deprivation-Induced Neuronal Death in Hippocampus.”. Journal of Neurochemistry 103 (6): 2212-23.

Although oxygen/glucose deprivation (OGD) has been widely used as a model of ischemic brain damage, the mechanisms underlying acute neuronal death in this model are not yet well understood. We used OGD in acute hippocampal slices to investigate the roles of reactive oxygen species and of the mitogen-activated protein kinases (MAPKs) in neuronal death. In particular, we tested the neuroprotective effects of two synthetic superoxide dismutase/catalase mimetics, EUK-189 and EUK-207. Acute hippocampal slices prepared from 2-month-old or postnatal day 10 rats were exposed to oxygen and glucose deprivation for 2 h followed by 2.5 h reoxygenation. Lactate dehydrogenase (LDH) release in the medium and propidium iodide (PI) uptake were used to evaluate cell viability. EUK-189 or EUK-207 applied during the OGD and reoxygenation periods decreased LDH release and PI uptake in slices from 2-month-old rats. EUK-189 or EUK-207 also partly blocked OGD-induced ATP depletion and extracellular signal-regulated kinases 1 and 2 (ERK1/2) dephosphorylation, and completely eliminated reactive oxygen species generation. The MEK inhibitor U0126 applied together with EUK-189 or EUK-207 completely blocked ERK1/2 activation, but had no effect on their protective effects against OGD-induced LDH release. U0126 alone had no effect on OGD-induced LDH release. EUK-207 had no effect on OGD-induced p38 or c-Jun N-terminal kinase dephosphorylation, and when the p38 inhibitor SB203580 was applied together with EUK-207, it had no effect on the protective effects of EUK-207. SB203580 alone had no effect on OGD-induced LDH release either. In slices from p10 rats, OGD also induced high-LDH release that was partly reversed by EUK-207; however, neither OGD nor EUK-207 produced significant changes in ERK1/2 and p38 phosphorylation. OGD-induced spectrin degradation was not modified by EUK-189 or EUK-207 in slices from p10 or 2-month-old rats, suggesting that their protective effects was not mediated through inhibition of calpain activation. Thus, both EUK-189 and EUK-207 provide neuroprotection in acute ischemic conditions, and this effect is related to elimination of free radical formation and partial reversal of ATP depletion, but not mediated by the activation or inhibition of the MEK/ERK or p38 pathways, or inhibition of calpain activation.

2006

Zhou, Miou, and Michel Baudry. (2006) 2006. “Developmental Changes in NMDA Neurotoxicity Reflect Developmental Changes in Subunit Composition of NMDA Receptors.”. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 26 (11): 2956-63.

Excitotoxicity is generally studied in dissociated neurons, cultured hippocampal slices, or intact animals. However, the requirements of dissociated neurons or cultured slices to use prenatal or juvenile rats seriously limit the advantages of these systems, whereas the complexity of intact animals prevents detailed molecular investigations. In the present experiments, we studied developmental changes in NMDA neurotoxicity in acute hippocampal slices with lactate dehydrogenase (LDH) release in medium, propidium iodide (PI) uptake, and Nissl staining as markers of cell damage. Calpain-mediated spectrin degradation was used to test calpain involvement in NMDA neurotoxicity. NMDA treatment produced increased LDH release, PI uptake, and spectrin degradation in slices from juvenile rats but not adult rats. NMDA-induced changes in slices from young rats were blocked completely by the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801) and by the antagonists of NR2B receptor ifenprodil and R-(R, S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine propranol and were partly blocked by calpain inhibitor III but were not affected by the NR2A-specific antagonist [(R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid. NMDA-induced changes in Nissl staining were also different in slices from young and adult rats and blocked by NR2B but not NR2A antagonists. In contrast to NMDA treatment, oxygen/glucose deprivation (OGD) induced neurotoxicity in slices from both young and adult rats, although OGD-induced toxicity was attenuated by MK-801 only in slices from young rats. Our results are consistent with the idea that NMDA-mediated toxicity is caused by activation of NR2B- but not NR2A-containing NMDA receptors leading to calpain activation and that developmental changes in NMDA toxicity reflect developmental changes in NMDA receptor subunit composition.

2004

Zhou, Miou, Zheng Liu, ChangLong Hu, ZhiHong Zhang, and YanAi Mei. (2004) 2004. “Developmental Regulation of a Na(+)-Activated Fast Outward K+ Current in Rat Myoblasts.”. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 14 (4-6): 225-30.

BACKGROUND/AIMS: Myoblasts undergoing differentiation sequentially express multiple K+ channels, and that ion channel expression varies depending on species and state of development. In this report, we reported a developmental regulation of fast activated and fast inactivated outward current in rat myoblasts.

METHODS: The kinetic and pharmacological property of the outward current was investigated by using the patch-clamp technique.

RESULTS: The outward current was elicited by a depolarizing step from -100 mV holding potential to +40 mV- +80 mV. The activation properties of this channel changed with days in culture. The outward current was blocked by 4-AP in a concentration dependent manner, with 0.5 mM and 2 mM 4-AP inhibiting the current by 10 +/- 3% and 56 +/- 3%, respectively. When 1 mM tetrodotoxin (TTX) was added to the bath solution or the membrane potential was depolarized to -50 mV, the fast outward current was aborted. Na+ dependent inhibition was observed when Na+ in the bath solution was replaced by Li+. In addition, replacement of K+ in the pipette solution by Cs+ almost completely eliminated the outward current.

CONCLUSION: The developmentally regulated outward current recorded in rat myoblasts is a Na+ influx-dependent outward K+ current, which may contribute to myoblast membrane firing of action potential or myoblast fusion.