Although oxygen/glucose deprivation (OGD) has been widely used as a model of ischemic brain damage, the mechanisms underlying acute neuronal death in this model are not yet well understood. We used OGD in acute hippocampal slices to investigate the roles of reactive oxygen species and of the mitogen-activated protein kinases (MAPKs) in neuronal death. In particular, we tested the neuroprotective effects of two synthetic superoxide dismutase/catalase mimetics, EUK-189 and EUK-207. Acute hippocampal slices prepared from 2-month-old or postnatal day 10 rats were exposed to oxygen and glucose deprivation for 2 h followed by 2.5 h reoxygenation. Lactate dehydrogenase (LDH) release in the medium and propidium iodide (PI) uptake were used to evaluate cell viability. EUK-189 or EUK-207 applied during the OGD and reoxygenation periods decreased LDH release and PI uptake in slices from 2-month-old rats. EUK-189 or EUK-207 also partly blocked OGD-induced ATP depletion and extracellular signal-regulated kinases 1 and 2 (ERK1/2) dephosphorylation, and completely eliminated reactive oxygen species generation. The MEK inhibitor U0126 applied together with EUK-189 or EUK-207 completely blocked ERK1/2 activation, but had no effect on their protective effects against OGD-induced LDH release. U0126 alone had no effect on OGD-induced LDH release. EUK-207 had no effect on OGD-induced p38 or c-Jun N-terminal kinase dephosphorylation, and when the p38 inhibitor SB203580 was applied together with EUK-207, it had no effect on the protective effects of EUK-207. SB203580 alone had no effect on OGD-induced LDH release either. In slices from p10 rats, OGD also induced high-LDH release that was partly reversed by EUK-207; however, neither OGD nor EUK-207 produced significant changes in ERK1/2 and p38 phosphorylation. OGD-induced spectrin degradation was not modified by EUK-189 or EUK-207 in slices from p10 or 2-month-old rats, suggesting that their protective effects was not mediated through inhibition of calpain activation. Thus, both EUK-189 and EUK-207 provide neuroprotection in acute ischemic conditions, and this effect is related to elimination of free radical formation and partial reversal of ATP depletion, but not mediated by the activation or inhibition of the MEK/ERK or p38 pathways, or inhibition of calpain activation.
Publications
2007
2006
Excitotoxicity is generally studied in dissociated neurons, cultured hippocampal slices, or intact animals. However, the requirements of dissociated neurons or cultured slices to use prenatal or juvenile rats seriously limit the advantages of these systems, whereas the complexity of intact animals prevents detailed molecular investigations. In the present experiments, we studied developmental changes in NMDA neurotoxicity in acute hippocampal slices with lactate dehydrogenase (LDH) release in medium, propidium iodide (PI) uptake, and Nissl staining as markers of cell damage. Calpain-mediated spectrin degradation was used to test calpain involvement in NMDA neurotoxicity. NMDA treatment produced increased LDH release, PI uptake, and spectrin degradation in slices from juvenile rats but not adult rats. NMDA-induced changes in slices from young rats were blocked completely by the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801) and by the antagonists of NR2B receptor ifenprodil and R-(R, S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine propranol and were partly blocked by calpain inhibitor III but were not affected by the NR2A-specific antagonist [(R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid. NMDA-induced changes in Nissl staining were also different in slices from young and adult rats and blocked by NR2B but not NR2A antagonists. In contrast to NMDA treatment, oxygen/glucose deprivation (OGD) induced neurotoxicity in slices from both young and adult rats, although OGD-induced toxicity was attenuated by MK-801 only in slices from young rats. Our results are consistent with the idea that NMDA-mediated toxicity is caused by activation of NR2B- but not NR2A-containing NMDA receptors leading to calpain activation and that developmental changes in NMDA toxicity reflect developmental changes in NMDA receptor subunit composition.
2004
BACKGROUND/AIMS: Myoblasts undergoing differentiation sequentially express multiple K+ channels, and that ion channel expression varies depending on species and state of development. In this report, we reported a developmental regulation of fast activated and fast inactivated outward current in rat myoblasts.
METHODS: The kinetic and pharmacological property of the outward current was investigated by using the patch-clamp technique.
RESULTS: The outward current was elicited by a depolarizing step from -100 mV holding potential to +40 mV- +80 mV. The activation properties of this channel changed with days in culture. The outward current was blocked by 4-AP in a concentration dependent manner, with 0.5 mM and 2 mM 4-AP inhibiting the current by 10 +/- 3% and 56 +/- 3%, respectively. When 1 mM tetrodotoxin (TTX) was added to the bath solution or the membrane potential was depolarized to -50 mV, the fast outward current was aborted. Na+ dependent inhibition was observed when Na+ in the bath solution was replaced by Li+. In addition, replacement of K+ in the pipette solution by Cs+ almost completely eliminated the outward current.
CONCLUSION: The developmentally regulated outward current recorded in rat myoblasts is a Na+ influx-dependent outward K+ current, which may contribute to myoblast membrane firing of action potential or myoblast fusion.
2003
5-aminolevulinic acid (ALA) and its hexyl-ester (He-ALA) has shown promising results in photodynamic detection and therapy of tumors. In this work, the photodynamic effects of ALA and He-ALA on neuroblastoma cells, hepatoma cells and fibroblast cells were comparatively studied. With the detection of fluorescence emission spectra, protoporphyrin IX (PpIX) induced by ALA or He-ALA was observed in these three cell lines. Confocal laser scanning microscope showed the diffuse PpIX fluorescence in cytoplasm of neuroblastoma cells. The kinetics of PpIX accumulation were different in these three kinds of cells. The PpIX content in hepatoma cells and fibroblast cells continuously increased with the incubation time of drugs until 12 h, while in neuroblastoma cells the PpIX content saturated around 8 h after incubation with ALA or He-ALA. In addition, the PpIX concentration in neuroblastoma cells was obviously higher than that in hepatoma cells and fibroblast cells, indicating that the PpIX production is cell line dependent. When incubated with ALA and irradiated with light, near 90% neuroblastoma cells were destroyed, while for hepatoma cells and fibroblast cells the death rate was around 50%. The results demonstrate that neuroblastoma cells are more sensitive to ALA-PDT and the neuro-tumor cells may be well suited for the treatment of ALA mediated photosensitization. Comparing to ALA, He-ALA can reach the similar results concerned PpIX production and PDT damaging in all three kinds of cells but with 10 times lower incubation concentration, demonstrating that He-ALA has higher efficiency than ALA on inactivation of cancer cells in vitro.
The inhibitory effect of the melatonin receptor antagonist luzindole on voltage-activated transient outward K(+) current (I(K(A))) was investigated in cultured rat cerebellar granule cells using the whole cell voltage-clamp technique. At the concentration of 1 microM to 1 mM, luzindole reversibly inhibited I(K(A)) in a concentration-dependent manner. In addition to reducing the current amplitude of I(K(A)),luzindole accelerated the fast inactivation of I(K(A)) channels and shifted the curves of voltage-dependent steady-state activation and inactivation of I(K(A)) by +6.6 mV and -7.0 mV, respectively. The inhibitory effect of luzindole was neither use-dependent nor voltage-dependent, suggesting that the binding affinity of luzindole to I(K(A)) channels is state-dependent. Including luzindole in the pipette solution, or extracellular application of 4 P-PDOT, an antagonist of melatonin receptors, did not change the luzindole-induced inhibitory effect on the I(K(A)) current, indicating that luzindole exerts its channel blocking inhibitory action at the extracellular mouth of the channel, and that the effect is not due to action of the melatonin receptors. Our data are the first demonstration that luzindole is able to block transient outward K(+) channels in rat cerebellar granule cells in a state-dependent manner, likely associated with extracellular interaction of the drug with the I(K(A)) inactivation gate.
5-Aminolevulinic acid (ALA) has shown promising in photodynamic detection and therapy of brain tumor. However, the knowledge on selective accumulation of ALA-induced protoporphyrin IX (PpIX) in brain tumor tissue is still fragment. In the present study, the rat C6 glioma cells, human SK-N-SH neuroblastoma cells, and rat normal cerebellar granule cells (RCG) were used to investigate the PpIX production and photocytotoxicity in vitro. The C6 cells and SK-N-SH cells showed a similar kinetics of PpIX accumulation after exposure to ALA or ALA hexyl ester (ALA-H), with an initial increase up to 6-8 h and then saturated. In the case of RCG cells, the PpIX accumulation slowly increased until 12 h studied. However the cellular PpIX content was more than 10 times higher in the C6 and SK-N-SH cells than that in the normal RCG cells. The intracellular localization of PpIX measured by cofocal laser scanning microscopy was in same pattern in the C6 glioma cells and RCG normal cells with a diffuse cytoplasm distribution. The sensitivity of the C6 cells and SK-N-SH cells to ALA or ALA-H PDT was similar. It appears that ALA-H could achieve similar or slightly better results than ALA with respect to PpIX production and photoinactivation of cells, although a 10 times lower concentration of ALA-H was used.
2001
The present study was initiated to investigate the effect of melatonin on K+ current in rat cerebellar granule cells for 2 to 6 days in culture (DIC). The whole-cell configuration of the conventional patch-clamp technique was used to record the outward K+ current. Two types of outward K+ current, a transient outward K+ current and a delayed rectifier K+ current, were separated by different voltage protocols and a specific blocker of K+ channel. Application of melatonin (10 microM) by a brief pressure ejection induced a significant and reversible increase of the delayed rectifier K+ current amplitude in 78% of the cells tested. The activated effect of melatonin on the K+ current was independent of the time in culture, and the percentage of activation remained at a relatively stable level from 2 DIC to 6 DIC; but that was dependent on the concentration of melatonin applied. The activation of the K+ current induced by melatonin presented no desensitization after repeated application of melatonin. The effect of melatonin on the K+ current can be mimicked by 2-iodomelatonin, a melatonin receptor agonist. With the addition of guanosine-5'-O-(3-thiophosphate) in the pipette solution, melatonin caused a stronger activation effect on the K+ channels, and an irreversible increase of the current amplitude in some granule cells tested. Pretreatment of cells with PTX suppressed the action of melatonin on the K+ current in most granule cells studied. In addition, the activation curves and inactivation curves tested with the steady-state activation and inactivation protocols were unchanged by melatonin, suggesting that melatonin did not modulate the channel's activation and inactivation properties. Our results demonstrated the presence of a functional melatonin receptor in cultured cerebellar granule cells from neonatal cerebellum. Activating the receptor can modulate the outward K+ currents by coupling to a PTX-sensitive G protein.