Silver nanoparticles (AgNPs) are widely used in medical and commercial products for their unique antibacterial functions. However, the impact of AgNPs on human neural development is not well understood. To investigate the effect of AgNPs on human neural development, various doses of 20 nm citrate-coated AgNP (AgSC) were administered to human embryonic stem cell derived neural progenitors during the neuronal differentiation. Immunofluorescence staining with neuronal progenitor markers SOX2 (sex determining region Y-box 2) and Nestin (VI intermediate filament protein) showed that AgSC inhibited rosette formation, neuronal progenitor proliferation, and neurite outgrowth. Furthermore, AgSC promoted astrocyte activation and neuronal apoptosis. These adverse effects can be partially recovered with ascorbic acid. A genome-wide transcriptome analysis of both AgSC treated and untreated samples indicated that the most up-graduated genes were a group of Metallothionein (1F, 1E, 2A) proteins, a metal-binding protein that plays an essential role in metal homeostasis, heavy metal detoxification, and cellular anti-oxidative defence. The most significantly down-regulated genes were neuronal differentiation 6 (NEUROD6) and fork head box G1 (FOXG1). GO analyse indicated that the regulation of cholesterol biosynthetic process, neuron differentiation, synapse organization and pattern specification, oliogenesis, and neuronal apoptosis were the most impacted biological processes. KEGG pathway analyse showed that the most significantly impacted pathways were C5 isoprenoid, axon guidance, Notch, WNT, RAS-MAPK signalling pathways, lysosome, and apoptosis. Our data suggests that AgSCs interfered with metal homeostasis and cholesterol biosynthesis which induced oxidative stress, inhibited neurogenesis, axon guidance, and promoted apoptosis. Supplementation with ascorbic acid could act as an antioxidant to prevent AgSC-mediated neurotoxicity.
Publications
2021
Despite a much higher proportion of intragenic heterochromatin-containing genes in crop genomes, the importance of intragenic heterochromatin in crop development remains unclear. Intragenic heterochromatin can be recognised by a protein complex, ASI1-AIPP1-EDM2 (AAE) complex, to regulate alternative polyadenylation. Here, we investigated the impact of rice ASI1 on global poly(A) site usage through poly(A) sequencing and ASI1-dependent regulation on rice development. We found that OsASI1 is essential for rice pollen development and flowering. OsASI1 dysfunction has an important impact on global poly(A) site usage, which is closely related to heterochromatin marks. Intriguingly, OsASI1 interacts with the intronic heterochromatin of OsXRNL, a nuclear XRN family exonuclease gene involved in the processing of an miRNA precursor, to promote the processing of full-length OsXRNL and regulate miRNA abundance. We found that OsASI1-mediated regulation of pollen development partially depends on OsXRNL. Finally, we characterised the rice AAE complex and its involvement in alternative polyadenylation and pollen development. Our findings help to elucidate an epigenetic mechanism governing miRNA abundance and rice development, and provide a valuable resource for studying the epigenetic mechanisms of many important processes in crops.
Alternative polyadenylation (APA) is a widespread post-transcriptional modification method that changes the 3' ends of transcripts by altering poly(A) site usage. However, the longitudinal transcriptomic 3' end profile and its mechanism of action are poorly understood. We applied diurnal time-course poly(A) tag sequencing (PAT-seq) for Arabidopsis and identified 3284 genes that generated both rhythmic and arrhythmic transcripts. These two classes of transcripts appear to exhibit dramatic differences in expression and translation activisty. The asynchronized transcripts derived by APA are embedded with different poly(A) signals, especially for rhythmic transcripts, which contain higher AAUAAA and UGUA signal proportions. The Pol II occupancy maximum is reached upstream of rhythmic poly(A) sites, while it is present directly at arrhythmic poly(A) sites. Integrating H3K9ac and H3K4me3 time-course data analyses revealed that transcriptional activation of histone markers may be involved in the differentiation of rhythmic and arrhythmic APA transcripts. These results implicate an interplay between histone modification and RNA 3'-end processing, shedding light on the mechanism of transcription rhythm and alternative polyadenylation.
The dynamic choice of different polyadenylation sites in a gene is referred to as alternative polyadenylation, which functions in many important biological processes. Large-scale messenger RNA 3' end sequencing has revealed that cleavage sites for polyadenylation are presented with microheterogeneity. To date, the conventional determination of polyadenylation site clusters is subjective and arbitrary, leading to inaccurate annotations. Here, we present a weighted density peak clustering method, QuantifyPoly(A), to accurately quantify genome-wide polyadenylation choices. Applying QuantifyPoly(A) on published 3' end sequencing datasets from both animals and plants, their polyadenylation profiles are reshaped into myriads of novel polyadenylation site clusters. Most of these novel polyadenylation site clusters show significantly dynamic usage across different biological samples or associate with binding sites of trans-acting factors. Upstream sequences of these clusters are enriched with polyadenylation signals UGUA, UAAA and/or AAUAAA in a species-dependent manner. Polyadenylation site clusters also exhibit species specificity, while plants ones generally show higher microheterogeneity than that of animals. QuantifyPoly(A) is broadly applicable to any types of 3' end sequencing data and species for accurate quantification and construction of the complex and dynamic polyadenylation landscape and enables us to decode alternative polyadenylation events invisible to conventional methods at a much higher resolution.
2020
Calpains represent a family of calcium-dependent proteases participating in a multitude of functions under physiological or pathological conditions. Calpain-1 is one of the most studied members of the family, is ubiquitously distributed in organs and tissues, and has been shown to be involved in synaptic plasticity and neuroprotection in mammalian brain. Calpain-1 deletion results in a number of phenotypic alterations. While some of these alterations can be explained by the acute functions of calpain-1, the present study was directed at studying alterations in gene expression that could also account for these phenotypic modifications. RNA-seq analysis identified 354 differentially expressed genes (DEGs) in brain of calpain-1 knock-out mice, as compared to their wild-type strain. Most DEGs were classified in 10 KEGG pathways, with the highest representations in Protein Processing in Endoplasmic Reticulum, MAP kinase and Alzheimer's disease pathways. Most DEGs were down-regulated and validation of a number of these genes indicated a corresponding decreased expression of their encoded proteins. The results indicate that calpain-1 is involved in the regulation of a significant number of genes affecting multiple brain functions. They also indicate that mutations in calpain-1 are likely to be involved in a number of brain disorders.
MOTIVATION: Alternative polyadenylation (APA) plays a key post-transcriptional regulatory role in mRNA stability and functions in eukaryotes. Single cell RNA-seq (scRNA-seq) is a powerful tool to discover cellular heterogeneity at gene expression level. Given 3' enriched strategy in library construction, the most commonly used scRNA-seq protocol-10× Genomics enables us to improve the study resolution of APA to the single cell level. However, currently there is no computational tool available for investigating APA profiles from scRNA-seq data.
RESULTS: Here, we present a package scDAPA for detecting and visualizing dynamic APA from scRNA-seq data. Taking bam/sam files and cell cluster labels as inputs, scDAPA detects APA dynamics using a histogram-based method and the Wilcoxon rank-sum test, and visualizes candidate genes with dynamic APA. Benchmarking results demonstrated that scDAPA can effectively identify genes with dynamic APA among different cell groups from scRNA-seq data.
AVAILABILITY AND IMPLEMENTATION: The scDAPA package is implemented in Shell and R, and is freely available at https://scdapa.sourceforge.io.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Alternative polyadenylation (APA) occurs in the process of mRNA maturation by adding a poly(A) tail at different locations, resulting increased diversity of mRNA isoforms and contributing to the complexity of gene regulatory network. Benefit from the development of high-throughput sequencing technologies, we could now delineate APA profiles of transcriptomes at an unprecedented pace. Especially the single cell RNA sequencing (scRNA-seq) technologies provide us opportunities to interrogate biological details of diverse and rare cell types. Despite increasing evidence showing that APA is involved in the cell type-specific regulation and function, efficient and specific laboratory methods for capturing poly(A) sites at single cell resolution are underdeveloped to date. In this review, we summarize existing experimental and computational methods for the identification of APA dynamics from diverse single cell types. A future perspective is also provided.
Poly(A) tail length (PAL) has been implicated in the regulation of mRNA translation activities. However, the extent of such regulation at the transcriptome level is less understood in plants. Herein, we report the development and optimization of a large-scale sequencing technique called the Assay for PAL-sequencing (APAL-seq). To explore the role of PAL on post-transcriptional modification and translation, we performed PAL profiling of Arabidopsis transcriptome in response to heat shock. Transcripts of 2,477 genes were found to have variable PAL upon heat treatments. Further study of the transcripts of 14 potential heat-responsive genes identified two distinct groups of genes. In one group, PAL was heat stress-independent, and in the other, PAL was heat stress-sensitive. Meanwhile, the protein expression of HSP70 and HSP17.6C was determined to test the impact of PAL on translational activity. In the absence of heat stress, neither gene demonstrated protein expression; however, under gradual or abrupt heat stress, both transcripts showed enhanced protein expression with elongated PAL. Interestingly, HSP17.6C protein levels were positively correlated with the severity of heat treatment and peaked when treated with abrupt heat. Our results suggest that plant genes have a high variability of PALs and that PAL contributes to swift posttranslational stress responses.
The comment by Sánchez-Tójar et al. (2020, Ecol Lett) questioned the methodology, transparency and conclusion of our study (Ecol Lett, 22, 2019, 1976). The comment has overlooked important evolutionary assumptions in their reanalysis, and the issues raised were in fact dealt with through the peer-review process. Far from being biased, the key conclusion of our meta-analysis still stands; transgenerational effects are largely adaptive.
Eukaryotic histone deacetylation, critical for maintaining nucleosome structure and regulating gene expression, is mediated by histone deacetylases (HDACs). Although nucleosomes have been reported to regulate mRNA polyadenylation in humans, the role of HDACs in regulating polyadenylation has not been uncovered. Taking advantage of phenotypic studies on Arabidopsis, HDA6 (one of HDACs) was found to be a critical part of many biological processes. Here, we report that HDA6 affects mRNA polyadenylation in Arabidopsis Poly(A) sites of up-regulated transcripts are closer to the histone acetylation peaks in hda6 compared to the wild-type Col-0. HDA6 is required for the deacetylation of histones around DNA on nucleosomes, which solely coincides with up-regulated or uniquely presented poly(A) sites in hda6 Furthermore, defective HDA6 results in an overrepresentation of the canonical poly(A) signal (AAUAAA) usage. Chromatin loci for generating AAUAAA-type transcripts have a comparatively low H3K9K14ac around poly(A) sites when compared to other noncanonical poly(A) signal-containing transcripts. These results indicate that HDA6 regulates polyadenylation in a histone deacetylation-dependent manner in Arabidopsis.